Hidden Markov Models for Spatio-temporal Pattern Recognition
نویسندگان
چکیده
The success of many real-world applications demonstrates that hidden Markov models (HMMs) are highly effective in one-dimensional pattern recognition problems such as speech recognition. Research is now focussed on extending HMMs to 2-D and possibly 3-D applications which arise in gesture, face, and handwriting recognition. Although the HMM has become a major workhorse of the pattern recognition community, there are few analytical results which can explain its remarkably good pattern recognition performance. There are also only a few theoretical principles for guiding researchers in selecting topologies or understanding how the model parameters contribute to performance. In this chapter, we deal with these issues and use simulated data to evaluate the performance of a number of alternatives to the traditional Baum-Welch algorithm for learning HMM parameters. We then compare the best of these strategies to Baum-Welch on a real hand gesture recognition system in an attempt to develop insights into these fundamental aspects of learning.
منابع مشابه
Diagnostic tools for evaluating and updating hidden Markov models
In this paper we consider two related problems in hidden Markov models (HMMs). One, how the various parameters of an HMM actually contribute to predictions of state sequences and spatio-temporal pattern recognition. Two, how the HMM parameters (and associated HMM topology) can be updated to improve performance. These issues are examined in the context of four di3erent experimental settings from...
متن کاملImproved Classification Using Hidden Markov Averaging from Multiple Observation Sequences
The enormous popularity of Hidden Markov models (HMMs) in spatio-temporal pattern recognition is largely due to the ability to “learn” model parameters from observation sequences through the Baum-Welch and other re-estimation procedures. In this study, HMM parameters are estimated from an ensemble of models trained on individual observation sequences. The proposed methods are shown to provide s...
متن کاملHidden Markov Models for Spatio-Temporal Pattern Recognition and Image Segmentation
Time and again hidden Markov models have been demonstrated to be highly effective in one-dimensional pattern recognition and classification problems such as speech recognition. A great deal of attention is now focussed on 2-D and possibly 3-D applications arising from problems encountered in computer vision in domains such as gesture, face, and handwriting recognition. Despite their widespread ...
متن کاملمدل سازی فضایی-زمانی وقوع و مقدار بارش زمستانه در گستره ایران با استفاده از مدل مارکف پنهان
Multi site modeling of rainfall is one of the most important issues in environmental sciences especially in watershed management. For this purpose, different statistical models have been developed which involve spatial approaches in simulation and modeling of daily rainfall values. The hidden Markov is one of the multi-site daily rainfall models which in addition to simulation of daily rainfall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004